THEORIST'S ANALYSIS TOOL

Roberto Franceschini

(franceschini@fis.uniroma3.it Stanza 114)

THE BIG PICTURE

Separation of scales

DIFFERENT PHENOMENA HAPPEN AT DIFFERENT TIME-SCALES

DIFFERENT PHENOMENA HAPPEN AT DIFFERENT TIME-SCALES

DIFFERENT PHENOMENA HAPPEN AT DIFFERENT TIME-SCALES

Red: Hard Scattering
Blue: Parton Shower
Purple: softer Underlying Event
Green: Hadronization
Dark Green: Hadron Decays

HARD SCATTERING

Typically a $2 \rightarrow 1$ or $2 \rightarrow 2$ process

$\sigma_{n \text {-bodies }} \sim \alpha^{n} \Rightarrow$ start considering process with lowest number of interactions

HARD SCATTERING

Typically a $2 \rightarrow 1$ or $2 \rightarrow 2$ process

$\sigma_{n-b o d i e s} \sim \alpha^{n} \Rightarrow$ start considering process with lowest number of interactions

AN EXAMPLE
 A heavy muon

MUON AND NEUTRON LIFE-TIME

$$
\tau \sim 10^{-6} s
$$

$$
\tau \sim 900 \mathrm{~s} \quad \Gamma \sim 1 / \tau \sim G_{F}\left(m_{n}-m_{p}\right)^{5}
$$

$$
\tau \sim 0.1 \mathrm{~ns} \Rightarrow c \tau=3 \mathrm{~cm}
$$

Mass of $\chi^{+} \sim 100 \mathrm{GeV}-1 \mathrm{TeV}$

HOW TO SEARCH FOR IT?

ELECTRON-POSITRON COLLISION

$$
c \tau=c \tau_{o \gamma}>\mathrm{T}(\theta)=4.4 \mathrm{~cm} / \sin \theta
$$

EVENT GENERATION

https://launchpad.net/mg5amcnlo

MADGPAPH

HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

> qsub -I -1 host=wn-01-01-01.cluster.roma3
> wget https://launchpad.net/mg5amcnlo/2.0/2.6.x/ +download/MG5 aMC_v3.0.0.beta.tar.gz
> tar zxf MG5_aMC_v3.0.0.beta.tar.gz
> python -V \#check python version is 2.7
> cd MG5_aMC_v3_0_0
> ./bin/mg5_aMC

HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

- MG5_aMC> tutorial
> MG5_aMC> help import
> MG5_aMC > import model MSSM_SLHA2
- MG5_aMC> display particles $x 1$ +

```
Particle x1 + has the following properties:
{
    'name': 'x1 +',
    'antiname': 'x1-',
    'spin': 2,
    'color': 1,
    'charge': 1.00,
    'mass': 'mdl_Mch1',
    'width': 'mdl_Wch1',
    'pdg_code': 1000024,
    'line': 'straight',
    'propagator': ",
    'is_part': True,
    'self_antipart': False,
    'type': ",
    'counterterm': {}
}
```


HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

> MG5_aMC> generate e+ e- > x1 + x1-

- MG5_aMC> launch

$\mid==1$

HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

```
Do you want to edit a card (press enter to bypass editing)?
```

/--|
| 1. param: param_card.dat
| 2.run : run_card.dat
BLOCK MASS \#
1000024 1.816965e+02 \# mch1
\# Running parameters

1500.0	$=$ ebeam1 ! beam 1 total energy in $G e V$
1500.0	$=$ ebeam2 ! beam 2 total energy in $G e V$

HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

HOW TO RUN THE HARD SCATTERING EVENT GENERATOR

GOODIES

- cat /proc/cpuinfo \#to see how many cpu you have on the node
- w \#to see how many computing resources are used in the node
> ssh -fnNT -L 2022:ui-01.roma3.infn.it:22 USERNAME@amaldi.fis.uniroma3.it \#to open a ssh tunnel
> sshfs -p 2022 USERNAME@127.0.0.1:PATH_YOU_WANT_TO_ACCESS ~/ ssh_local \#to mount locally the remote folder accessible only from ui-01, you need to install sshfs
> open -a Google\Chrome.app /Users/roberto/ssh_local \#if you use Chrome on Mac OS X
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/MadgraphTutorial

LES HOUCHES FILE FORMAT

hep-ph/0609017 - A standard format for Les Houches Event Files http://arxiv.org/abs/hep-ph/06090I7

LHEF LIBRARIES

> http://home.thep.lu.se/~leif/LHEF/ for C+ +
> https://github.com/lukasheinrich/pylhe for Python

- http://pdg.lbl.gov/2017/reviews/rpp2017-rev-monte-carlonumbering.pdf

2) Event information, repeated as many times as there are events
a) one line with common event information:

NUP IDPRUP XWGTUP SCALUP AQEDUP AQCDUP
b) NUP lines, one for each particle I in the range 1 through NUP IDUP(I) ISTUP(I) MOTHUP(1,I) MOTHUP(2,I) ICOLUP(1,I) ICOLUP(2,I) PUP(1,I) PUP(2,I) PUP(3,I) PUP(4,I) PUP(5,I) VTIMUP(I) SPINUP(I)

LHEF EVENTS

2) Event information, repeated as many times as there are events
a) one line with common event information:

NUP IDPRUP XWGTUP SCALUP AQEDUP AQCDUP

b) NUP lines, one for each particle I in the range 1 through NUP

> IDUP(I) ISTUP(I) MOTHUP(1,I) MOTHUP(2,I) ICOLUP(1,I) ICOLUP(2,I) PUP(1,I) PUP(2,I) PUP(3,I) PUP(4,I) PUP(5,I) VTIMUP(I) SPINUP(I)

ANALYSIS

With Jupyter

ALL IN ONE SOLUTION

NOTEBOOKS INTERFACE

> jupyter notebook --no-browser

Copy/paste this URL into your browser when you connect for the first time, to login with a token:
http://localhost:8888/?token=0c332205b79a1ebdc9cc80b7a890f620b96893abe1c7ffaf

PHYSICS LIBRARY

- https://github.com/lukasheinrich/lorentz/
- https://github.com/RobertoFranceschini/PyLHEAnalysis

