THEORIST'S ANALYSIS TOOL

Roberto Franceschini (franceschini@fis.uniroma3.it Stanza 114)

THE BIG DICTURE

Separation of scales

DIFFERENT PHENOMENA HAPPEN AT DIFFERENT TIME-SCALES

DIFFERENT PHENOMENA HAPPEN AT DIFFERENT TIME-SCALES

DIFFERENT PHENOMENA HAPPEN AT DIFFERENT TIME-SCALES

- Red: Hard Scattering
- Blue: Parton Shower
- Purple: softer Underlying Event
- Green: Hadronization
- Dark Green: Hadron Decays

HARD SCATTERING

Typically a $2 \rightarrow 1$ *or* $2 \rightarrow 2$ *process*

 $\sigma_{n-bodies} \sim \alpha^n \Rightarrow$ start considering process with lowest number of interactions

HARD SCATTERING

Typically a $2 \rightarrow 1$ *or* $2 \rightarrow 2$ *process*

 $\sigma_{n-bodies} \sim \alpha^n \Rightarrow$ start considering process with lowest number of interactions

A heavy muon

MUON AND NEUTRON LIFE-TIME

$$\tau \sim 10^{-6} \, s$$

 $\tau \sim 900 \, s \qquad \Gamma \sim 1/\tau \sim G_F(m_n - m_p)^5$

 $\tau \sim 0.1 \text{ ns} \Rightarrow c\tau = 3 \text{ cm}$ Mass of $\chi^+ \sim 100 \text{ GeV} - 1 \text{ TeV}$

HOW TO SEARCH FOR IT?

ELECTRON-POSITRON COLLISION

EVENT GENERATION

https://launchpad.net/mg5amcnlo

- ► qsub -I -l host=wn-01-01-01.cluster.roma3
- wget <u>https://launchpad.net/mg5amcnlo/2.0/2.6.x/</u> +download/MG5_aMC_v3.0.0.beta.tar.gz
- tar zxf MG5_aMC_v3.0.0.beta.tar.gz
- ► python -V #check python version is 2.7
- \succ cd MG5_aMC_v3_0_0
- ➤ ./bin/mg5_aMC

- ► MG5_aMC> tutorial
- MG5_aMC> help import
- MG5_aMC> import model MSSM_SLHA2
- MG5_aMC> display particles x1+

Particle x1 + has the following properties:

'name': 'x1 + ', 'antiname': 'x1-', 'spin': 2, 'color': 1, 'charge': 1.00, 'mass': 'mdl Mch1', 'width': 'mdl Wch1', 'pdg_code': 1000024, 'line': 'straight', 'propagator': ", 'is part': True, 'self antipart': False, 'type': ", 'counterterm': {}

MG5_aMC> generate e+ e- > x1+ x1 MG5 aMC> launch

The following switches determine which programs are run:

/	<i>Z====================================</i>	===== values		=======	other options ======	== \
/	1. Choose the shower/hadronization program	shower = Not	Avail.	Ple	ase install module	/
/	2. Choose the detector simulation program	detector = Not	Avail.	Ple	ase install module	/
/	3. Choose an analysis package (plot/convert)	analysis = Not	Avail.	Ple	ase install module	/
/	4. Decay onshell particles	madspin = OFF		/ ON /	onshell	/
/	5. Add weights to events for new hypp.	reweight = OFF		ON		/
١						==/

Do you want to edit a card (press enter to bypass editing)?

/-----\

| 1. param : param_card.dat

| 2. run : run_card.dat

\-----/

BLOCK MASS

•••

1000024 1.816965e+02 # mch1

Running parameters

•••

1500.0 = ebeam1 ! beam 1 total energy in GeV
1500.0 = ebeam2 ! beam 2 total energy in GeV

more information in /storage/DATA-05/gridrm3/franceschini/Particelle/MG5_aMC_v3_0_0/HardScattering/index.html

Last Update: Sun May 27 13:06:12 CEST 2018

.

<	K N C A Search Google								
	Results in the MSSM_SLHA2 for $e + e - > x1 + x1$ -								
<u>+</u>									
	Available Results								
(
+	Run	Collider	Banner	Cross section (pb)	Events	Data	Output		Action
	run_01	e+ e- 500.0 x 500.0 GeV	<u>tag_1</u>	<u>0.1314 ± 0.00021</u>	10000	parton madevent	<u>LHE</u>	remov launc	ve run h detector simulation
	run_02	e+ e- 1500.0 x 1500.0 GeV	<u>tag_1</u>	<u>0.02086 ± 2.4e-</u> <u>05</u>	10000	parton madevent	<u>LHE</u>	remov launc	ve run h detector simulation
Main Page									

GOODIES

- cat /proc/cpuinfo #to see how many cpu you have on the node
- **w** #to see how many computing resources are used in the node
- ssh -fnNT -L 2022:ui-01.roma3.infn.it:22
 USERNAME@amaldi.fis.uniroma3.it #to open a ssh tunnel
- sshfs -p 2022 USERNAME@127.0.0.1:PATH_YOU_WANT_TO_ACCESS ~/ ssh_local #to mount locally the remote folder accessible only from ui-01, you need to install sshfs
- open -a Google\ Chrome.app /Users/roberto/ssh_local #if you use Chrome on Mac OS X
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/MadgraphTutorial

LES HOUCHES FILE FORMAT

hep-ph/0609017 - A standard format for Les Houches Event Files http://arxiv.org/abs/hep-ph/0609017

LHEF LIBRARIES

- ► <u>http://home.thep.lu.se/~leif/LHEF/</u> for C++
- https://github.com/lukasheinrich/pylhe for Python
- http://pdg.lbl.gov/2017/reviews/rpp2017-rev-monte-carlonumbering.pdf
- 2) Event information, repeated as many times as there are events
 - a) one line with common event information:

NUP IDPRUP XWGTUP SCALUP AQEDUP AQCDUP

b) NUP lines, one for each particle I in the range 1 through NUP

IDUP(I) ISTUP(I) MOTHUP(1,I) MOTHUP(2,I) ICOLUP(1,I) ICOLUP(2,I) PUP(1,I) PUP(2,I) PUP(3,I) PUP(4,I) PUP(5,I) VTIMUP(I) SPINUP(I)

LHEF EVENTS

2) Event information, repeated as many times as there are events

a) one line with common event information:

NUP IDPRUP XWGTUP SCALUP AQEDUP AQCDUP

b) NUP lines, one for each particle I in the range 1 through NUP

IDUP(I) ISTUP(I) MOTHUP(1,I) MOTHUP(2,I) ICOLUP(1,I) ICOLUP(2,I) PUP(1,I) PUP(2,I) PUP(3,I) PUP(4,I) PUP(5,I) VTIMUP(I) SPINUP(I)

<event>

ANALYSIS

With Jupyter

ALL IN ONE SOLUTION

<		www.anaconda.com/download	▼ □	Q▼ Search Google ▼
ŧ	O ANACOND	Α.		≡
J				
9				
+				
	Dowr	nload Anaconda	a Distril	oution
		Version 5.1 Release Date: Feb	ruary 15, 2018	
			<u>~</u> a	
		Download For:		

NOTEBOOKS INTERFACE

jupyter notebook --no-browser

Copy/paste this URL into your browser when you connect for the first time,

to login with a token:

http://localhost:8888/?token=0c332205b79a1ebdc9cc80b7a890f620b96893abe1c7ffaf

<	> K ⊨ C ⋒ S localhost:8888/tree	▼ 📮 🔍 Search Google 🔹
	💭 jupyter	Logout
± ≣	Files Running Clusters Nbextensions	
0	Select items to perform actions on them.	Upload New - 2
		Name 🛧 Last Modified 🛧
+	coutput	15 days ago
	CosThetaHiggsino.ipynb	16 days ago
	analysis.human	15 days ago
	C debuginfo	15 days ago
	unweighted_events.lhe	17 days ago

PHYSICS LIBRARY

- https://github.com/lukasheinrich/lorentz/
- https://github.com/RobertoFranceschini/PyLHEAnalysis